

Micro-RDC Microelectronics Research Development Corporation

Feature Sheet

Single-Layer Configurable Design-Hardened Structured ASIC Features:

- IBM 9LP (Low Power) 90nm CMOS technology, processed on IBM's "<u>Trusted</u>" fabrication line (on shore)
- Design-Hardened Fabric w/Distributed Dual Port SRAM (Logic Cell w/Memory in Each Tile)
- Logic uses selectable 1ns and/or 2ns delay, patented Temporal Latch structures to provide SEU Immunity
- Radiation Tolerance of Logic & Memory: TID > 3Mrad(Si), SEU < 1e-8 to 1e-10 Errors/bit-day,

SEL > 75 MeV-cm²/mg (LET)

- Design-Hardened PLL, Input Frequency: 10MHz to 125MHz
- Design-Hardened 1.25 Gb/s LVDS TX/RX I/O; Input Frequency: 75 MHz to 125 MHz
- Design-Hardened 8K X 8 Blocks of Configurable SRAM w/EDAC
- Each Die Contains Design-Hardened Via-Configurable (Boot-up) ROM
- Design-Hardened Via-Configurable General Purpose I/O
- Dual Voltage Supply; 1.2V core and 1.8V to 2.5V I/O
- Ultra-Low Power (Only 10s to a few 100s of mWs per design)
- On-chip Health (Temperature) Monitors
- Some Die can be configured for COMSEC Applications

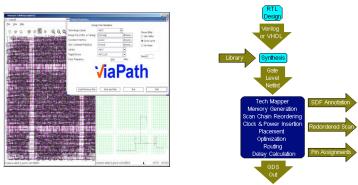
DESIGN MACROS NOW AVAILABLE

Multi-Project-Wafer Reticles will be Fabricated Containing 4 Different Die Sizes, Providing 6 Different Feature Sets:

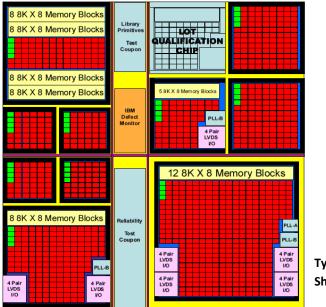
Die Size (mm²)	User Die / Reticle	CMOS User I/O	LVDS* I/O	Equivalent Logic Gates	Flip Flops	Distributed DP SRAM Memory	Block Memory SRAM w/EDAC	VROM	PLLs
~ 3 X 3 (LO)	4	96	None	~104K	4,864	~76K Bits	None	4 X 9K bits X 8 (288K Bits)	None
~ 5 X 5 (FF)	1	118	4 Pair TX/RX	~173K	8,064	~126K Bits	5 Blocks 8K X 8 / Block	4 X 9K bits X 8 (288K Bits)	1 PLL
~ 5 X 5 (LO)	2	158	None	~286K	13,312	~208K Bits	None	4 X 9K bits X 8 (288K Bits)	None
~ 7 X 7 (EM)	1	248	None	~220K	10,240	~160K Bits	32 Blocks 8K X 8 / Block	4 X 9K bits X 8 (288K Bits)	None
~ 7 X 7 (FF)	1	192	8 Pair TX/RX	~478K	22,272	~348K Bits	8 Blocks 8K X 8 / Block	4 X 9K bits X 8 (288K Bits)	1 PLL
~ 10 X 10 (FF)	1	256	16 Pair TX/RX	~1.14M	52,992	~828K Bits	12 Blocks 8K X 8 / Block	4 X 9K bits X 8 (288K Bits)	2 PLLs
(LO) = Logic	Only; (FF)	= Full Feat	ure; (EM) =	Extra Memory	2				
* LVDS lanes	are power	ed separat	ely from th	e chip's core p	ower, en	abling use for C	OMSEC or for T	rusted Keys.	

Initial Package Offerings*:

Die Sizes			Numb				
~3mm X ~3mm	132 CQFP		181pga				
~5mm X ~5mm	132 CQFP	172 CQFP	181pga	208cqfp	240cqfp		
~7mm X ~7mm				208cqfp	240cqfp	255LGA/CGA	484LGA/CGA
~10mm X ~10mm						256CQFP	484LGA/CGA


* 1) Packages shown are for prototyping purposes.

2) Custom packages for Flight can be developed. Note: A Custom 484 CLGA Package for Flight does exist for the 10mm x 10mm die



The Cost of Obtaining Qualified ICs for Flight Programs is Greatly Reduced in Four Ways:

1) Using our design flow can result in <u>Reduced Design Hours/Design Cycle Time</u>. ViASIC's ViaPath place and route software converts a VHDL/Verilog design into a Design-Hardened Structured ASIC.

- 2) One-Layer Configurability Results in Fabrication Costs Based on a Single Reticle Layer (Via-3).
- 3) Multi-Project-Wafer Reticles Enable Shared Reticle/Lot Fabrication Costs Over Multiple Programs.

Typical Fabrication Lot Reticle Showing 10 Die Available

4) A Lot Qualification Vehicle on every Reticle, enables Multi-Project-Wafers to <u>Share Flight Die Qualification</u> <u>Costs</u> for Multiple Programs.

A Low-Cost Solution for Low-Volume Radiation Hardened ICs

For more information, please contact:

Joe Cuchiaro, President

Micro-RDC 1850 Woodmoor Drive, Suite 200 Monument, Colorado 80132 Phone: (719) 531-0805 info@micro-rdc.com